2.4-2.5 The Sine and Cosine Ratios

Constructing Your Understanding

A. Examine the nested right triangles below.

- $\angle \mathrm{A}$ is common to each triangle. How are the other acute angles in each triangle related? \qquad人
- How do you know? LA is the same + all right $\angle S$
- How are the triangles related?
B. Complete this table.

- How do the ratios compare? Same
- What do you think the value of each ratio depends on?

In a right triangle, the ratios that relate each leg to the hypotenuse depend only on the measure of the \qquad acute angle , and not on the \qquad size of the triangle. These ratios are called the \qquad ratio and the cosine ratio.

The Primary Trigonometric Ratios

- The tangent ratio

- The sine ratio

The sine of an angle, A, is the ratio of the length of the opposite Side over the

- The cosine ratio

The cosine of an angle, A, is the ratio of the length of the adjacent side over the \qquad

In short: $\sin A=\frac{o \rho p}{\text { hyp }} ; \cos A=\frac{a d j}{\text { hyp }} ; \tan A=\frac{o \rho \rho}{\text { adj }}$
To recall these trigonometric ratios quickly, remember the acronym:
SOHCAHIOA

You can use a scientific calculator to determine the measure of an angle:

- When you know its sine, use

SOHCAHTOA
个个
Ex. \#1: Determine the measures of $\angle \mathrm{G}$ and $\angle \mathrm{H}$ to the nearest tenth of a degree.
We have "adj" + "hyp"

$$
\begin{aligned}
& \cos G=\frac{\text { adj }}{\text { hyp }} \\
& \cos G=\frac{6}{14} \\
& \cos G=0.4285714286 \\
& \angle G=\cos ^{-1}(0.4285714286) \\
& \angle G=64.6^{\circ}
\end{aligned}
$$

On a Separate Piece of Paper Complete Check Your Understanding \#2 p. 93
Ex.\#2: A water bomber is flying at an altitude of 5000 ft . The plane's radar shows that it is 8000 ft . from the target site. What is the angle of elevation of the plane measured from the target site, to the nearest degree?

$$
\underset{\uparrow \uparrow}{\text { SOHCAHTOA }}
$$

$$
\sin R=\frac{o p p}{h y p}
$$

$$
\angle R=39^{\circ}
$$

$$
\sin R=\frac{5000}{8000}
$$

$$
\angle R=\sin ^{-1}\left(\frac{5000}{8000}\right)
$$

$$
\angle R=38.682817 \ldots
$$

