Name: \qquad

Physics - Chapter 9 Pretest

1. From the graph on the right, determine the object's acceleration between 0 to 10 s . Equation
work answer with units
2. From the graph on the right, determine the object's acceleration between time interval 10 to 12 s .
Equation
work
answer with units

3. Sketch the graph of the following situation: A car at rest starts moving backwards. The car picks up speed and then begins to slow down and stop. The car then begins to move forward faster than it was moving backwards until it reaches a constant speed (assume constant accelerations for straight lines)

Indicate on the graph + / - / 0 velocity and $+/-/ 0$ acceleration for each line segment.

4. A train has an initial velocity of $2 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$. It speeds up to $7 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$. Find the change in velocity.

$$
\text { Equation } \quad \underline{\text { work }} \quad \underline{\text { answer with units }} \quad \underline{\text { description of motion }}
$$

5. An object has a change in velocity of $-8 \mathrm{~m} / \mathrm{s}$. If the object had an initial velocity of $+14 \mathrm{~m} / \mathrm{s}$, determine the final velocity.

Equation work answer with units description of motion
6. A car had a change in velocity of $6 \mathrm{~m} / \mathrm{s}$ [W]. If the car's final velocity is $20 \mathrm{~m} / \mathrm{s}[\mathrm{W}]$, determine the car's initial velocity.

Equation
work
answer with units description of motion
7. An object travels south at $10 \mathrm{~m} / \mathrm{s}$. If the object has a change in velocity of $+10 \mathrm{~m} / \mathrm{s}$, determine the objects final velocity.

Equation work answer with units description of motion
8. A train is travelling at $25 \mathrm{~m} / \mathrm{s}$ [E]. If the train is travelling east at $25 \mathrm{~m} / \mathrm{s}$ after 30 min , determine the change in velocity.

Equation $\quad \underline{\text { work }}$ answer with units description of motion
9. A player kicks a soccer ball, changing its velocity from $0 \mathrm{~m} / \mathrm{s}$ to $+8 \mathrm{~m} / \mathrm{s}$ in 0.025 s . Determine the acceleration of the ball.

Equations work answer with units
10. How long does it take a car to change its velocity by $+20 \mathrm{~m} / \mathrm{s}$ at an acceleration rate of $5 \mathrm{~m} / \mathrm{s}^{2}$?

Equations work answer with units
11. An object accelerates at $10 \mathrm{~m} / \mathrm{s}^{2}$ [E] for 6.4 s . Determine the change in velocity.

Equations work answer with units
12. A football is kicked straight up at an initial velocity of $25 \mathrm{~m} / \mathrm{s}$. Determine the final velocity after 2 s . Assume gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Equations work answer with units
13. An object is in motion according to the graph on the right.
a. Determine the change in velocity from 0 to 3 s .
b. Determine the acceleration from 0 to 3 s .
c. Determine the object's velocity and acceleration at 4 s .
d. Determine the object's change in velocity from 5 to 7 s .
e. Determine the object's acceleration from 5 to 7 s .
f. Determine the object's acceleration from 7 to 9 s .
g. Describe the motion of the object from 0 to 9 s .
14. Positive (+) and negative (-) are used to represent the direction of an object's velocity and acceleration. For each combination of initial velocity an acceleration note whether the object is speeding up or slowing down.

Initial Velocity	Acceleration	Speeding up or slowing down
a) positive (+)	Positive (+)	
b) positive (+)	Negative (-)	
c) Negative (-)	Positive (+)	
d) Negative (-)	Negative (-)	

