Challenging Questions that need Attention

1. 2 . Which of the following coordinates are intercepts of the linear relation $5 x-2 y+20=0$
A. I only
B. II only
C. I and III only

I	$(-4,0)$
II	$(-4,10)$
III	$(0,10)$
IV	$(0,-10)$

$$
\begin{aligned}
& \text { Errors - combine } \\
& x+y \text { to form } 1 \\
& \text { point } \\
& \text { or - wrong sign }
\end{aligned}
$$

D. I and IV only
2. Label the Quadrants: I, II, III, IV.

3.4. The solution of a system of two equations occurs in Quadrant III. The first equation is
$y=\frac{3}{2} x+2$. Which of the following equations could be the second equation of the system.
(A.) $y=-\frac{1}{2} x-2$
B. $y=-\frac{1}{2} x+5$
C. $y=2 x-5$
D. $y=2 x+2$
4.9. Factor: $4 m^{2}-16 n^{2}$

$$
\begin{aligned}
& =4\left(m^{2}-4 n^{2}\right) \\
& =4(m-2 n)(m-2 n)
\end{aligned}
$$

Error: Did not factor FuLLy
esp. Wot GCF
A. $4\left(m^{2}-n^{2}\right)$
B. $4\left(m^{4}-2 n^{2}\right)\left(m^{m}+2 n^{2}\right)$
C. $(2 m-4 n)(2 m+4 n)$
D. $(4 m-16 n)(4 m+16 n)$

5 11. Which calculation shows the conversion of 6780 yards to kilometres.
A. $6780 y d \times \frac{0.9144 \mathrm{~m}}{1 y d} \times \frac{1 \mathrm{~km}}{1000 \mathrm{~m}}$

Errors

B. $6780 \mathrm{yd} \times \frac{1 \mathrm{yd}}{0.9144 \mathrm{~m}} \times \frac{1 \mathrm{~km}}{1000 \mathrm{~m}}$
(C. $6780 y d \times \frac{1 \mathrm{yd}}{0.9144 \mathrm{~m}} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}$
D. $6780 y d \times \frac{0.9144 \mathrm{~m}}{1 \mathrm{yd}} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}$

Challenging Questions that need Attention

6.15. Which of the following relations are functions?

I	$(2,5),(-5,1),(0,3),(6,2)$
II	$(4,-3),(2,1),(4,5),(6,7) \times$
III	$(-5,2),(1,2),(3,2),(4,3)$

A I only
B I and III only
C. I and II only
D. II and III only
7.16. The slope of a line segment is $\frac{1}{3}$. The segment has endpoints $A(-5,4)$ and $B(4, n)$.

Determine the value of n.
A. 31
(B. 7
C. $\frac{11}{3}$
D. 1
8.17. Two lines with slopes $\frac{3}{5}$ and $-\frac{15}{k}$ are perpendicular. Determine the value of k.

A. 9
B. 25
C. -25
D. 9
9.18. What does the slope of the graph below represent.

(50)

$$
\begin{aligned}
m & =\frac{\text { rise }}{\text { run }} \\
& =\frac{\$}{\text { tickets }}
\end{aligned}
$$

A. price per ticket
B. profit from tickets
C. revenue from tickets
D. number of tickets sold

Number of Tickets Sold

Error: took slope as $\frac{\text { run }}{\text { rise }}$

Challenging Questions that need Attention

10.23 . The graph below shows the cost of a wedding reception based on the number of guests attending.

Number of Guests (n)
Which of the following statements are true.

I	The dependent variable is n, Number of Guests. X
II	The situation represents a linear relation.
III	The equation $c=20 n$ could represent this situation X

A. I only
B. II only
C. I and II only
D. II and III only
11.24. Determine the equation in general form of the linear relation $y-3=-\frac{2}{4}(x+5)$
A. $2 x+4 y-2=0$
B. $2 x+y-2=0$

$$
4 y-12=-2(x+5)
$$

C. $2 x+4 y+5=0$
$4 y-12=-2 x-10$
+10
D. $2 x+4 y-3=0$
$2 x+4 y-2=0$

Errors: no
distribution

- two sign errors.
12.26. Determine the equation, in slope-intercept form, of a line that is perpendicular to $y=2 x+5$ and has an x-intercept of $4 \quad 2 \perp-\frac{1}{2}$
A. $y=-\frac{1}{2} x+4$
$y=-\frac{1}{2} x+b$
x-int $(4,0)$
B. $y=-\frac{1}{2} x+2$
C. $y=-2 x+8$
$0=-\frac{1}{2}(4)+b$
D. $y=\frac{1}{2} x-2$
$0=-2+b$
$2=b$
$y=-\frac{1}{2} x+2$

Errors.

- correct slope but

13. 28. Ross and Rachel rented a room at the Grand and held a dinner party for 150 of their closest friends. Each plate of dinner cost the couple $\$ 20$. They spent a total of $\$ 3300$, this included the rental fee of the room. Determine an equation that represents the cost, C , in dollars, as a function of the number of guests, n.

$$
c=20 n+b
$$

A. $C(n)=20 n$
B. $C(n)=20 n+150$
C. $C(n)=20 n+3300$
$3300=20(150)+b$
D. $C(n)=20 n+300$
$3300-3000=b$
Error:
24% used dep
var as fixed
cost

Challenging Questions that need Attention
14.31. Solve: $\quad 4 x+3 y-15=0$ け
(1) $\times 4=(2)$

$16 x+12 y-60=0$
A. $(0,5)$
B. $(6,-3)$
C. There is no solution.
D. There is an infinite number of solutions.

Error:

- didn't notice it is the same line + picked the first point
- Saw slopes same + thought

15,32 . Two planes have a cruising speed of $570 \mathrm{~km} / \mathrm{h}$ without wind. The first plane flies for 12 hours against a constant headwind. The second plane flies for 10 hours in the opposite direction with the same wind (a tailwind). The second plane flies 370 km less than the first plane.

Determine two equations that could be used to solve for the wind speed, w, and the distance travelled by the first plane, d.
(1) $(570-w) 12=d$
(A.)

$$
\begin{aligned}
& (570-w)(12)=d \\
& (570+w)(10)=d-370
\end{aligned}
$$

(2) $(570+w) 10=d-370$
B. $(570-w)(12)=d$

$$
(570+w)(10)=d+370
$$

C. $(570+w)(12)=d$

$$
(570-w)(10)=d-370
$$

D. $(570+w)(12)=d$

$$
(570-w)(10)=d+370
$$

16.33. How many different prime factors does 36 have?

(A.) 2
B. 3
C. 4
D. 8

$$
36=2 \cdot 2 \cdot 3 \cdot 3
$$

Prime Factors: $2+3$
(1 is not prime)

Error:

- choose \# factors in prime factorization or include the $\#$.
17.34. Match each of the following numbers to the classification of the type of number. Each number will match up with more than one category.

Error - natural \#

Challenging Questions that need Attention

18. 37. The population of bunnies in Kelowna doubles every year. There are currently 200 bunnies. Error: When will there be more than 10000 bunnies?
$\begin{array}{lllllll}\text { A. } 5 \\ \text { B. } \\ 6 & 200 & \underbrace{\frac{400}{2}} \frac{800}{} \frac{1600}{} 3200 \quad 6400 ل_{12800}\end{array}$
C. 7
D. 50
19.38. Simplify: $\left(4 m^{2} n^{3}\right)^{2} \div\left(8 m^{3} n^{4}\right)^{2}$
A. $\frac{1}{2 m^{2} n^{2}}$
$\frac{16 m^{4} n^{6}}{64 m^{6} n^{8}}=\frac{1}{4 m^{2} n^{2}}$
A. $\frac{1}{2 m^{2} n^{2}}$
B. $\frac{1}{4 m^{2} n^{2}}$

Error
-Powers weren't applied to coefficients.

Error

- Powers not applied to coefficients
- When Subtracting
neg exponent from positive

Error
207. Choose $1^{\text {st }}$ step

25\% Choose no
mistake

I	$A=(2 x+1)(x+4)-3(x+2)$
II	$A=2 x^{2}+8 x+x+4-3(x+2)$
III	$A=2 x^{2}+9 x+4-3 x+6$
IV	$A=2 x^{2}+6 x+10$

Which step did Timmy make a mistake?
A. I
B. II
C. III
D. IV

Challenging Questions that need Attention

22.43. Which of the following expressions have a factor of $x-6$

Error:

- factor of sum of squares
- not factoring
trinomial
with leading coefficient correctly.

Error

- Incorrect

$480000 \mathrm{~g} \quad 2150 \mathrm{~kg}$ $=480 \mathrm{~kg}$
A. 480000 g
B. 2150 kg
4600 pounds
C. 4600 pounds

$$
\begin{aligned}
& 4600 \mathrm{lbs} \times \frac{0.454 \mathrm{~kg}}{116} \\
& =2088.4 \mathrm{~kg}
\end{aligned}
$$

4.3 imperial tons
4.3 ton $\times \frac{2000 \mathrm{lbs}}{1 \operatorname{ton}} \times \frac{0.454 \mathrm{~kg}}{116}$
$=3904.4 \mathrm{~kg}$

D.

2445 . Which mass in the following list is the heaviest?

C.

"shape"
-not seeing a rectangle
25.46. What is a good estimate of the length of one regular step?
A. 1 foot
(B.) 1 metre
C. 300 cm
D. 2 yards

Error:

- very short length
of step
(toe-heel)?

Challenging Questions that need Attention

26 48. A shed with length 3 m , width 2 m , and height 2 m , needs to be painted. The total area of the door is m^{2} and does not get painted. There are two options for buying paint, as show below. Determine the cheapest cost to paint the exterior walls and roof of the shed.
A. $\$ 45.00$
B. $\$ 58.50$
C. $\$ 60.00$
D. $\$ 07.50$

Errors:

- Included door
- Included
floor.

$$
S A=3(2)(2)+(2)(2)(2)+3(2)-3
$$

$$
\begin{aligned}
& \text { OPtions: } \\
& \begin{aligned}
& 6+6+6+6=24 \Rightarrow 4(15)=60 \\
& 3(6)+3(1.5)=22.5 \Rightarrow 3(15)+3(4.50) \\
& 15(1.5)=22.5 \Rightarrow 15(4.50) \\
&=67.5
\end{aligned}
\end{aligned}
$$

$$
=22 \mathrm{~m}^{2}
$$

Error

> A. $340.34 \mathrm{~cm}^{2}$ B. $314.16 \mathrm{~cm}^{2}$ C. $364.64 \mathrm{~cm}^{2}$ D. $942.48 \mathrm{~cm}^{2}$

- used slant
height for height.

Challenging Questions that need Attention
28. 50. Tiffany \& Co. offers a tennis ball set that consist of four tennis balls packaged in a sterling silver container. The container keep the tennis balls at optimal playing temperature and sells for $\$ 1500$. If the four tennis balls are stacked in the container and fit perfectly, with no wiggle room, how much empty space is inside the cylinder. Note that a tennis ball has a radius of 3.35 cm .

$$
\begin{aligned}
& V_{\text {cylinder }}=\pi r^{2} h \\
& r=3.35 \\
& h
\end{aligned}=(3.35 \times 2) \times 4=26.80 \text { (} \begin{aligned}
& =\pi(3.35)^{2}(26.8) \\
& =944.87
\end{aligned}
$$

Error:

- used radius instead of diameter to call. height Just subtracted one sphere.
A. $157 \mathrm{~cm}^{3}$
B. $315 \mathrm{~cm}^{3}$

C $757 \mathrm{~cm}^{3}$
D. $945 \mathrm{~cm}^{3}$

$$
V_{\text {sphere }}=\frac{4}{3} \pi r^{3}
$$

$$
=\frac{4}{3} \pi(3.35)^{3} \times 4
$$

$$
=188.03
$$

29. 52. Polar Company has designed an ice block in the shape of a cube. The volume of the cube is $15625 \mathrm{~cm}^{3}$. Which of the following dimensions is the smallest opening of an ice dispenser that will accommodate length AB ?

$$
\begin{aligned}
& V=l w h \\
& V=l^{3} \\
& 15625=l^{3} \\
& \sqrt[3]{15625}=l \\
& l=25
\end{aligned}
$$

A. 25 cm wide

B 40 cm wide
C. 45 cm wide
D. over 50 cm wide

$$
\begin{array}{lll}
25^{2}+25^{2}= \\
x=\sqrt{1250}^{2}
\end{array} \quad \begin{array}{ll}
\\
& \ddots
\end{array} \quad 25^{2}+\sqrt{1250}^{2}=A B^{2}
$$

